
Linux on zSeries: Tips, Tools and Tricks

Malcolm Beattie
IBM EMEA Enterprise Server Group

Introduction

A mixed bag of tips and tricks for users and system
administrators of Linux systems

Not zSeries-specific...but not specific to non-zSeries

Shell usage: auto-completion, events and script

Common filters: cut, awk, sort counts, perl -i

Cron, At, Batch

Screen

Filesystems: bind and loop mounts

Processes and Performance

Networking: iproute2, ip, tc

Debugging simple TCP protocols (if time)

Shell auto-completion of filenames

Shells can auto-complete commands and filenames

Start typing a filename:
$ lpr lah_

Hit <Tab> key: shell completes name if it's unique:

Shell auto-completion of filenames

Shells can auto-complete commands and filenames

Start typing a filename:
$ lpr lah_

Hit <Tab> key: shell completes name if it's unique:
$ lpr lahulpe-2002-tips.ps _

Shell auto-completion of filenames

Shells can auto-complete commands and filenames

Start typing a filename:
$ lpr lah_

Hit <Tab> key: shell completes name if it's unique:
$ lpr lahulpe-2002-tips.ps _

If ambiguous, the name is completed as far as
possible:

$ lpr myb_ then <Tab> key; line becomes:

Shell auto-completion of filenames

Shells can auto-complete commands and filenames

Start typing a filename:
$ lpr lah_

Hit <Tab> key: shell completes name if it's unique:
$ lpr lahulpe-2002-tips.ps _

If ambiguous, the name is completed as far as
possible:

$ lpr myb_ then <Tab> key; line becomes:
$ lpr mybook-chapt_

and shell beeps to warn of ambiguity

Shell completion of ambiguous names

When shell beeps and stops at an ambiguity, you
can list all possibilities by hitting <Tab> again
(for bash) or Ctrl/D (for tcsh).
Shell then lists all possibilities and re-prompts
with partially completed line:

$ lpr mybook-chapt_ (hit <Tab> again)

Shell completion of ambiguous names

When shell beeps and stops at an ambiguity, you
can list all possibilities by hitting <Tab> again
(for bash) or Ctrl/D (for tcsh).
Shell then lists all possibilities and re-prompts
with partially completed line:

$ lpr mybook-chapt_ (hit <Tab> again)
mybook-chapt1.ps mybook-chapt2.ps
mybook-chapt3.ps mybook-chapt4.ps
$ lpr mybook-chapt_

Shell Events

Event designators let you refer to previous command
lines (or parts) via abbreviations starting "!".

The last word of your previous line is "!$"
$ munge report-2002jan12.txt

You can now print out the report with
$ lpr !$

Repeat the most recent command that started "re":
$!re
regenerate foo bar baz
...

Plenty of others exist, some more useful than others

Shell session transcripts

You can generate a transcript of a shell session:
$ script mytrans
Script started, file is mytrans
$ dosomething long and complex
...
$ exit
exit
Script done, file is mytrans

The session transcript is now in file "mytrans"

Common filters

cut
awk '{print $n}'
... | sort | uniq -c | sort -nr
perl -i.bak -ple 's/foo/bar/'

cut

cut selects columns/fields from fixed-column files

To output characters 1-8 and 51-52 of each line:
$ cut -c1-8,51-52

To output field 2 (fields delimited by ":") of each line
$ cut -f2 -d:

Field delimiter defaults to \t (tab) when "-d" omitted

awk

awk is a "little language" for line-at-a-time filtering

fancy functions available but basics are useful too

Basic filter usage is
$ awk '(PATTERN) {ACTION} ...'

awk reads through stdin once, and splits each line...

...into whitespace-separated fields named $1, $2, $3,...

If the line matches any PATTERN specifier...

... awk performs the associated ACTION

awk examples

A directory listing from "ls -l" looks like this:
-rw-r--r-- 1 fred users 173346 Jun 6 12:00 foo

-rw-r--r-- 1 fred users 14277 Jun 6 12:00 bar

-rw-r--r-- 1 fred users 21440 Jun 6 12:00 baz

To print out the sizes (in bytes) of those files:
$ ls -l | awk '{print $5}'
173346
14277
21440

Note omitted PATTERN means "match every line"

awk examples

A disk usage listing from "du" looks like this:
$ du
120 ./foo/conf
524 ./foo/extra
1808 ./foo
240 ./bar

To list subdirectories containing over 1000KB:
$ du | awk '($1 > 1000)'
1808 ./foo

Note omitted ACTION means "print the whole line"

awk examples

To add up the size in KB of all subdirectories:
$ du */ | awk '{s += $1} END {print s}'
99432

Trailing / on glob */ restricts matches to directory
names only

awk variables ("s" above) do not need to be declared

special pattern END (no parentheses) matches after end
of file

Sorted frequency list

last shows recent logins. Its output looks like:
alice pts/9 rhodium.testlan Tue Jun 4 13:54 - 15:03 (01:09)

bob pts/12 mercury.testlan Tue Jun 4 13:44 - 15:03 (01:19)

alice pts/8 rhodium.testlan Tue Jun 4 13:43 - 13:52 (00:09)

Who logged in most frequently recently?
$ last | awk '{print $1}' | sort | uniq -c | sort -nr
 8492 bob
 5284 alice

 3102 charlie

Sorted frequency list

A line from an Apache access log looks like:
10.1.2.1 - - [14/May/2002:16:52:35 +0100] "GET / HTTP/1.1" 200 1763

What are the peak hours for web connections?
$ awk '{print $4}' < access_log | cut -c14-15
| sort | uniq -c | sort -nr

 11765 10
 9342 11
 8723 14

perl -i -pe

Perl has command-line options for in-place edits
$ perl -i.bak -pe 's/OLD/NEW/' foo

Perl reads file foo one line at a time...

...and for each one substitutes OLD with NEW...

...and writes out the resulting line

The old data ends up in foo.bak

The new data ends up in foo
open(foo,O_RDONLY);rename(foo,foo.bak);open(foo,O_WRONLY)

Cron, At, Batch

Cron runs jobs every hour/day/third Monday

It comes with two less-well-known subsystems
at

batch

Not in JES' league but sometimes useful

at

at triggers a one-off job at a chosen time
$ at 10pm
at> wget http://busy.example.com/foo
at> ^D
job 20 at 2002-06-04 22:00

at captures your current directory, shell and
environment at submission for running the job

stdout/stderr from the job is mailed to you

at now

at now can be useful
$ at now
at> make all
at> ^D
job 21 at 2002-06-04 14:24

Do something else; review output later at your leisure

atq and atrm allow for job list and removal

 batch allows (very) basic queue configuration

Screen

screen allows your login session to persist across
disconnections/reconnections

$ screen

Initialises a new persistent session; clears screen
$ long_complex_task
...

Session disconnects (network error, coffee time, ...)

Screen

screen to the rescue...

Connect again from anywhere
$ screen -r

Restores your session from where it left off

Even display contents are restored

Multiple sessions and hot-keys supported

Terminal-based; GUI equivalent would be vnc

Filesystems: loop and bind mounts

Linux lets you "loopback" mount a filesystem from a file
containing a disk image

mount -o loop -t ext2 foo.img /mnt/foo

The option "-o loop" sets up a block device behind
the scenes (/dev/loopn) to fetch blocks from
foo.img

Also useful when you have a CD image file
mount -o loop -r -t iso9660 cd.img /mnt/cdrom

Good idea to give filesystem type to "-t" explicitly

and to use "-r" to mount read-only where appropriate

Filesystems: bind mounts

Linux 2.4 introduces a powerful namespace feature

Take part of the existing filesystem namespace...

...and mount it on another part of the namespace...

...concurrently and fully coherent in both places
mount --bind /lib /opt/dumbd/lib

A chroot to /opt/dumbd will have /lib available
mount --bind /guestvol/etc /etc

A guest-specific etc directory overmounts the old etc...

...even if the root filesystem is mounted readonly...

...and, unlike symlinks, current directory remains right

Filesystem: bind mounts

New Linux tasks can share parent's namespace...

...or choose to have their own independent namespace

Inspired by Plan9, Linux version written by Al Viro

Per-instance mount flags (e.g. readonly) for 2.5.x

Allows powerful ways to separate users or daemons
whilst sharing necessary parts of the filesystem

Processes and Performance

fuser and lsof

/proc/PID/fd and netstat -e

/proc/PID/maps

vmstat, iostat, sar

strace and ltrace

fuser

fuser lists which processes are currently using a file,
mountpoint or network port

Who currently has /etc/foo.conf open?
$ fuser -v /etc/foo.conf

 USER PID ACCESS COMMAND

/etc/foo.conf fred 4705 f.... fooprog

Option -v shows verbose ps-like list

ACCESS type: ordinary (f)ile, (c)urrent directory, (e)
xecutable, (r)oot directory or (m)mapped file.

fuser

Who is keeping mountpoint /opt/bigapp busy?
$ fuser -m /opt/bigapp
/opt/bigapp: 2544 2544c 2602 2602c

Who is connected to local port 22 (ssh)?
$ fuser -n tcp 22

Who is connected to remote host 10.1.2.3?
$ fuser -n tcp ,10.1.2.3

Full spec is local_port,remote_host,remote_port

fuser and lsof

fuser can send a signal to all the processes it finds
$ fuser -k ...

lsof has similar functionality to fuser

/proc/PID/fd

The /proc "pseudo"filesystem presents live kernel
status information in the form of files and directories

/proc/PID/fd looks like a directory containing a
symlink for each open file descriptor of process PID

$ ls -l /proc/1234/fd
lrwx------ 1 fred users 64 Jun 4 15:18 0 -> /dev/pts/10

lrwx------ 1 fred users 64 Jun 4 15:18 1 -> /dev/pts/10

lrwx------ 1 fred users 64 Jun 4 15:18 2 -> /dev/pts/10

lrwx------ 1 fred users 64 Jun 4 15:18 4 -> /var/spool/mail/fred

stdin/stdout/stderr on pseudoterminal 10, descriptor 4 is
fred's mail spool file

/proc/PID/fd

Open files that have been deleted show their original
name followed by " (deleted)"

Sockets are shown in the form "socket:[81240]"
81240 is the "inode number" of the socket.

Match socket inode numbers to the conenctions they represent
by using the "-e" option to netstat:

$ netstat --inet -e
Active Internet connections (w/o servers)

... Local Address Foreign Address ... Inode

... mercury.testlan:smtp foo.example.com:smtp... 81240

/proc/PID/maps

/proc/PID/maps shows the memory map of the address
space of process PID

$ cat /proc/1234/maps
08048000-080af000 r-xp 00000000 03:05 197058 /usr/bin/mutt

080af000-080b4000 rw-p 00066000 03:05 197058 /usr/bin/mutt

080b4000-080d3000 rwxp 00000000 00:00 0

40000000-40016000 r-xp 00000000 03:01 96804 /lib/ld-2.2.4.so

40016000-40017000 rw-p 00015000 03:01 96804 /lib/ld-2.2.4.so

...

bfff8000-c0000000 rwxp ffff9000 00:00 0

(This map is from Linux/x86 not Linux on S/390)

/proc/PID/maps

Let's look more closely at one line:
08048000-080af000 r-xp 00000000 03:05 197058 /usr/bin/mutt

Each line shows a linear region (vma) of address space

The line starts with [start_address, end_address + 1]

Then follow the permissions
(r)ead, (w)rite, e(x)ecute, as for a file

Though Linux tracks "x", some hw architectures ignore it

Then (p)rivate as opposed to (s)hared

Then the file offset at which the mapping occurs

Then the (hex) major:minor, inode number and filename
of the underlying object (0 for anonymous)

vmstat, iostat, sar

vmstat shows current system activity
number of processes running/blocked

amount of memory free, idle and used as buffers

global count of swap in/out and blocks in/out

interrupts/sec, context switches/sec

percentages of CPU for user/system/idle

iostat shows current activity by I/O devices
relies on kernel code not in every vendor kernel

sar collects and displays system activity history

strace

strace shows system calls performed by a process
the process may be started fresh ("strace someprog")

or it may be an existing process ("strace -p PID")

multithreaded processes can't currently be traced reliably

What config files does oddapp read?
$ strace -e trace=file oddapp
...

open("/home/fred/.oddapprc", O_RDONLY) = -1 ENOENT (No such file or directory)

open("/opt/oddapp/etc/oddapp.conf", O_RDONLY) = 3

strace

What network connections does oddapp make?
$ strace -e trace=connect oddapp
connect(3, {sin_family=AF_INET, sin_port=htons
(80), sin_addr=inet_addr("10.1.2.3")}}, 16)
= 0

Do a hex and ASCII dump of all data written to fd 5:
$ strace -o fd5.out -e write=5 oddapp

strace can follow fork() to child processes, print
timestamps of calls and do other useful things too

ltrace

ltrace traces calls to dynamic libraries

Similar to strace except for the executable/library
boundary rather than the userland/kernel boundary

$ ltrace date
...

time(0xbfffe25c) = 1023711897

localtime(0xbfffe234) = 0x401663c0

...

printf("%s\n", "Mon Jun 10 13:24:57 BST 2002") = 29

iproute2: ip and tc

Linux kernels since 2.2.x include advanced routing and
traffic control functionality

kernel functionality is controlled by utilities ip and tc

ip is a superset of the "old" ifconfig and route
utilities

tc allows advanced traffic control such as CBQ (Class
Based Queuing) and other traffic shaping policies

A PostScript manual ip-cref.ps is the only official
documentation for ip and web searches are required for
the more advanced tc functionality.

iproute2: ip examples

ip enables capabilities such as:
routing by source address and with multiple tables

$ ip rule add from 10.0.2.0/24 table 2

source address selection for chosen routes

$ ip route add ... src 10.0.1.7

multiple default routes with dead gateway detection

$ ip route add default nexthop via
10.90.1.1 nexthop via 10.90.2.1

aliasing of entire subnets

$ ip addr add 10.22.0.0/16 dev lo

iproute2: tc

Traffic control is configured via the tc utility

The full functionality allows arbitrary trees of classes,
filters and queue disciplines

More basic use such as
restrict subnet 10.123.0.0/16

to a bandwidth of 1 Mbps

with/without a hard cap of 2 Mbps

can be done with tc via shapecfg and cbq

shapecfg and similar may not be shipped with all
Linux distributions but examples are around if you look
hard

Contact details

Malcolm Beattie

Linux Technical Consultant

IBM EMEA Enterprise Server Group

beattiem@uk.ibm.com

Malcolm Beattie/UK/IBM@IBMGB

Debugging simple TCP stream protocols

Many application level protocols are carried over TCP
and use plain line-by-line ASCII text

This makes basic debugging very easy if you know a few
of the relevant commands; you don't need a fancy client
app

All you need is a decent straightforward telnet client
(any Unix/Linux one should do fine)

Standard steps are
$ telnet targethost portname

Trying 10.1.2.3...

Connected to targethost.

Escape character is '^]'.

Banner line from target host

simple-commands-go-here

Debugging SMTP connections

SMTP (Simple Mail Transfer Protocol) is the protocol
which carries electronic mail across the Internet

It is documented in RFC 2821 (a recent update of RFC
821) and uses port name "smtp" (port number 25)

$ telnet foo.example.com smtp
220 foo.example.com ESMTP Exim 3.22 #1 Mon, 10
Jun 2002 14:32:16 +0100

Banner shows host, MTA software and server time

Debugging SMTP connections

Following the banner, a mail delivery looks like this:
HELO me.testlan.example.com

250 foo.example.com Hello me.testlan.example.com [10.0.1.2]

MAIL FROM:<fred@example.com>

250 <fred@example.com> is syntactically correct

RCPT TO:<bob@example.com>

250 <bob@example.com> is syntactically correct

DATA

354 Enter message, ending with "." on a line by itself

Subject: Hello world

Test if this gets delivered

.

250 OK id=17HPPC-0001k9-00

Debugging SMTP Connections

Now you can do a new "MAIL FROM:<...>" or else type
"QUIT" to disconnect from the server

The descriptive output from servers will vary: the 3-digit
numbers starting each reply line are the canonical
response codes.

Servers vary in how much sanity checking they do on the
"HELO" host address you supply

Don't forget the <angle brackets> around addresses

Don't forget to separate mail headers from the mail body
with a blank line

Debugging POP connections

POP (Post Office Protocol) is a protocol used to
download mail from a mailstore server (cf. IMAP)

It is documented in RFC 1939 and uses portname "pop3"
(port number 110).

$ telnet foo.example.com pop3
+OK Hello there.
USER fred
+OK Password required.
PASS passwordgoeshere
+OK logged in.

Debugging POP Connections

Now that you are logged in, you can list the messages
stored on the server:

LIST
+OK 3 messages (2485 octets)
1 610
2 710
3 1165
.

You can delete a message like this:
DELE 2
+OK message 2 deleted

Debugging POP Connections

You can retrieve an entire message like this:
RETR 1

+OK 610 octets follow.
Subject: Cancelled meeting

[and all the rest of the message]
.

Or you can look at just the top 20 (say) lines like this
TOP 1 20

+OK headers follow.

Return-Path: <bob@example.com>

Delivered-To: fred@example.com
[rest of the first 20 lines]
.

Debugging POP Connections

You can undo any deletions carried out in the current
session like this:

RSET
+OK Resurrected.

and you log out like this (which, in the process, actually
carries out any deletions you have marked):

QUIT
+OK Bye-bye.

Debugging IMAP Connections

IMAP (Internet Message Access Protocol) is a protocol
used to manipulate mail held on a server: multiple
mailboxes, server-based searching and client-side
cachine are supported.

IMAP4rev1 is documented in RFC 2060 and uses the
portname "imap" (port number 143)

$ telnet foo.example.com imap
* OK [CAPABILITY IMAP4 IMAP4REV1 AUTH=LOGIN]
foo.example.com IMAP4rev1 2000.287rh at Mon,
10 Jun 2002 15:48:28 +0100 (BST)

Debugging IMAP Connections

IMAP is somewhat more complex than other text-based
stream protocols

Each line from the client must be of the form
TAG COMMAND ARGUMENTS

The command streams and response streams may be out
of synchronisation: response lines are either
– prefixed with the TAG of the command they relate to

– or prefixed with "*" for unsolicited responses

When debugging a test connection you may as well just
use the same tag each time: "a", say.

Debugging IMAP Connections

Log in (with the LOGIN auth method) like this:
a LOGIN fred passwordgoeshere
* CAPABILITY IMAP4
a OK LOGIN completed

Before accessing mail, you must select which mailbox to
operate on: the magic name INBOX always exists:

a SELECT INBOX

* 3 EXISTS

* 2 RECENT
[More unsolicited lines with extra information]

a OK [READ-WRITE] SELECT completed

Debugging IMAP Connections

The FETCH command gives information about chosen
parts (header(s), body, MIME parts, ...) of one or more
messages

Here's a FETCH to list brief info on all messages:
a FETCH 1:* FAST
* 1 FETCH (FLAGS \Seen) INTERNALDATE "10-Jun-
2002 15:31:41 +0100" RFC822.SIZE 1383)

* 2 FETCH (FLAGS \Recent) INTERNALDATE "10-
Jun-2002 16:22:36 +0100" RFC822.SIZE 2385)

a OK FETCH completed

Debugging IMAP Connections

Here's a FETCH to list the headers of message 2:
a FETCH 2 RFC822.HEADER
* 2 FETCH (RFC822.HEADER {370}
Subject: Event on Thursday
...

)
a OK FETCH completed

Debugging IMAP Connections

Here's a FETCH to list the body of message 2:
a FETCH 2 BODY[TEXT]
* 2 FETCH (BODY[TEXT] {2876}
The details for the Thursday event
...
)
* 2 FETCH (FLAGS (\Recent \Seen))
a OK FETCH completed

Debugging IMAP Connections

Deletion is done by setting the appropriate flag. To
delete messages 10 through 20, do this:

a STORE 10:20 +FLAGS (\Deleted)
* 10 FETCH (FLAGS (\Seen \Deleted))
...
a OK STORE completed

and in order to commit the deletions, follow up with:
a EXPUNGE

To log out from the server, use
a LOGOUT

Debugging HTTP Connections

HTTP (Hypertext Transfer Protocol) is a protocol used
for the World Wide Web

It is documented in RFC 2616 (for version 1.1) and uses
portname "http" (port number 80).

$ telnet www.example.com http

There is no server banner printed for HTTP

Most web servers allow three different GET methods:
GET url (quick but no headers returned)

GET url HTTP/1.0 (can't set virtual server name)

GET url HTTP/1.1 (needs some extra client headers)

Debugging HTTP Connections

If you just want to see the contents of a text file:
GET /index.html
<HTML><HEAD>
...
</HTML>
Connection closed by foreign host.

As soon as you type the "GET" line, the file is
downloaded and the server closes the connection.

Debugging HTTP Connections

If you want to see header information from the server,
then you need to talk real (but minimal) HTTP:

GET /index.html HTTP/1.0

HTTP/1.1 200 OK

Date: Mon, 10 Jun 2002 15:52:53 GMT
Last-Modified: Thu, 01 Nov 2001 20:51:45 GMT

Content-Length: 2890

Content-Type: text/html

<HTML>
...

Note you need to hit <Return> twice after your GET

Debugging HTTP Connections

That second <Return> was to signal to the server that
you weren't supplying headers of your own.

If you want to specify a virtual server name, you need to
do so in a header and use HTTP 1.1:

GET /index.html HTTP/1.1
Host: www.example.com

Now do a header-ending <Return>, as before

You should really specify the full URL in the GET

HTTP 1.1 defaults to leaving the connection open: use an
explicit "Connection: close" header to counter it.

